ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 32994

Темы:   [ Теория графов (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 8

Выписать в ряд цифры от 1 до 9 (каждую по разу) так, чтобы каждые две подряд идущие цифры давали бы двузначное число, делящееся на 7 или на 13.

Прислать комментарий     Решение

Задача 108729

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Наглядная геометрия ]
Сложность: 2+
Классы: 6,7,8

На прямой через равные промежутки поставили десять точек, и они заняли отрезок длины a. На другой прямой через такие же промежутки поставили 100 точек, и они заняли отрезок длины b. Во сколько раз b больше a?

Прислать комментарий     Решение

Задача 108752

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

а) Аборигены поймали Кука и просят за его выкуп ровно 455 рупий 50 монетами. Смогут ли соратники Кука выкупить его на таких условиях, если в тех краях имеют хождение только монеты в 5, 17 и 31 рупии?
б) А если бы аборигены хотели получить сумму в 910 рупий 50 монетами по 10, 34 и 62 рупии?

Прислать комментарий     Решение

Задача 32988

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3-
Классы: 7,8,9

Делится ли  222555 + 555222  на 7?

Прислать комментарий     Решение

Задача 77980

Тема:   [ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .