Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 188]
|
|
Сложность: 3 Классы: 7,8,9
|
Существует ли треугольник с вершинами в узлах клетчатой бумаги,
каждая сторона которого длиннее 100 клеточек, а площадь меньше площади
одной клеточки?
|
|
Сложность: 3 Классы: 7,8,9
|
Через каждую грань куба провели плоскость. На сколько частей разделят пространство данные плоскости?
|
|
Сложность: 3 Классы: 7,8,9
|
В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?
|
|
Сложность: 3 Классы: 7,8,9
|
С помощью волшебного банкомата можно поменять любую купюру на любое конечное число купюр меньшего достоинства. Получив 1000 франков одной бумажкой, сможете ли Вы каждый месяц платить квартплату? (Дело происходит в Швейцарии, где квартплата постоянна, а жизнь бесконечна.)
|
|
Сложность: 3 Классы: 7,8,9
|
Город Нью-Васюки имеет форму квадрата со стороной 5 км. Улицы делят его на кварталы, являющиеся квадратами со стороной 200 м. Какую наибольшую площадь можно обойти, пройдя по улицам Нью-Васюков 10 км и вернувшись в исходную точку?
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 188]