Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 188]
Кузнечик прыгает по прямой. В первый раз он прыгнул на 1 см в какую-то сторону, во второй раз – на 2 см и так далее.
Докажите, что после 1985 прыжков он не может оказаться там, где начинал.
|
|
Сложность: 3+ Классы: 8,9,10
|
Какое максимальное число ладей можно расставить в кубе 8×8×8, чтобы они не били друг друга?
|
|
Сложность: 3+ Классы: 7,8,9
|
В некотором царстве живут маги, чародеи и волшебники. Про
них известно следующее: во-первых, не все маги являются чародеями, во-вторых,
если волшебник не является чародеем, то он не маг. Правда ли, что не все
маги -- волшебники?
|
|
Сложность: 3+ Классы: 7,8,9
|
На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали.
а) Придумайте, как перевернуть ровно одну шашку на доске 6×6, произвольно уставленной шашками.
б) Можно ли добиться того, чтобы все шашки на доске 5×6 стали белыми, если чёрными изначально была ровно половина шашек.
|
|
Сложность: 3+ Классы: 7,8,9
|
а) Какое максимальное количество слонов можно расставить на
доске 1000 на 1000 так, чтобы они не били друг друга?
б) Какое максимальное количество коней можно расставить на доске 8×8 так, чтобы они не били друг друга?
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 188]