Страница: 1 [Всего задач: 1]
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Сетка линий, изображённая на рисунке, состоит из концентрических окружностей с радиусами 1, 2, 3, 4,... и центром в
точке О, прямой l, проходящей через
точку О, и всевозможных касательных к окружностям,
параллельных l. Вся плоскость разбита этими линиями на клетки, которые раскрашены в шахматном порядке. В цепочке точек, показанных на рисунке, каждые две соседние точки являются противоположными вершинами тёмной клетки. Докажите, что все точки такой бесконечной цепочки лежат на одной параболе (поэтому рисунок словно соткан из светлых и тёмных парабол).
Страница: 1 [Всего задач: 1]