ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 73687

Темы:   [ Деление с остатком ]
[ Разложение на множители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Пусть a, b, m, n – натуральные числа, причём числа a и b взаимно просты и  a > 1.
Докажите, что если  am + bm  делится на  an + bn,  то m делится на n.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .