Страница: 1 [Всего задач: 1]
|
|
Сложность: 6- Классы: 8,9,10
|
Дан квадрат со
стороной 1. От него отсекают четыре
уголка — четыре треугольника, у каждого из которых две стороны идут по сторонам квадрата и составляют 1/3 их длины. С полученным 8-угольником делают то же самое: от каждой вершины отрезают треугольник, две стороны которого составляют по 1/3 соответствующих сторон 8-угольника, и так далее. Получается последовательность многоугольников (каждый содержится в предыдущем). Найдите площадь фигуры, являющейся пересечением всех этих многоугольников (то есть образованной точками, принадлежащими всем многоугольникам).
Страница: 1 [Всего задач: 1]