Страница: 1 [Всего задач: 3]
Задача
98035
(#М1211)
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли так выбрать шар, треугольную пирамиду и плоскость, чтобы всякая
плоскость, параллельная выбранной, пересекала шар и пирамиду по фигурам равной
площади?
Задача
98038
(#М1212)
|
|
Сложность: 4- Классы: 9,10
|
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с
положительными разностями d1, d2, d3, ... . Может ли случиться, что при этом сумма
1/d1 + 1/d2 + ... + 1/dk не превышает 0,9? Рассмотрите случаи:
а) общее число прогрессий конечно;
б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).
Задача
98040
(#М1214)
|
|
Сложность: 4 Классы: 8,9,10
|
В прямоугольной таблице m строк и n столбцов (m < n). В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.
Страница: 1 [Всего задач: 3]