Страница: 1 [Всего задач: 1]
|
|
Сложность: 4 Классы: 9,10,11
|
Отрезок длиной 3
n разбивается на три равные части. Первая и третья из них
называются отмеченными. Каждый из отмеченных отрезков разбивается на три части,
из которых первая и третья снова называются отмеченными и т.д. до тех пор, пока
не получатся отрезки длиной 1. Концы всех отмеченных отрезков называются
отмеченными точками. Доказать, что для любого целого
k(1
k3
n) можно
найти две отмеченные точки, расстояние между которыми равно
k.
Страница: 1 [Всего задач: 1]