ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Имеются семь жетонов с цифрами 1, 2, 3, 4, 5, 6, 7.
Докажите, что ни одно семизначное число, составленное посредством этих жетонов, не делится на другое.

Вниз   Решение


Доказать, что уравнение  19x³ – 17y³ = 50  не имеет решений в целых числах.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78555

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3+
Классы: 9,10

Дан треугольник ABC, в котором сторона AB больше BC. Проведены биссектрисы AK и CM (K лежит на BC, M лежит на AB). Доказать, что отрезок AM больше MK, а отрезок MK больше KC.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .