ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 78659

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Площадь трапеции ]
[ Рациональные и иррациональные числа ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4+
Классы: 9,10,11

Существует ли четырёхугольник ABCD площади 1 такой, что для любой точки O внутри него площадь хотя бы одного из треугольников OAB, OBC, OCD, DOA иррациональна.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .