ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 78703

Темы:   [ Периодичность и непериодичность ]
[ Линейные неравенства и системы неравенств ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Дана бесконечная последовательность чисел a1, ..., an, ... Она периодична с периодом 100, то есть  a1 = a101a2 = a102,  ... Известно, что  a1 ≥ 0,  a1 + a2 ≤ 0,  a1 + a2 + a3 ≥ 0  и вообще, сумма  a1 + a2 + ... + an  неотрицательна при нечётном n и неположительна при чётном n. Доказать, что  |a99| ≥ |a100|.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .