|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи M – произвольная точка на стороне AC треугольника ABC . Доказать, что отношение радиусов окружностей, описанных около треугольников ABM и BCM , не зависит от выбора точки M на стороне AC . Через некоторую точку, взятую внутри треугольника, проведены три прямые, параллельные сторонам. Эти прямые разбивают треугольник на шесть частей, три из которых – треугольники с площадями S1, S2, S3. Найдите площадь S данного треугольника. В большой таблетке от жадности 11 г антивещества, в средней – 1,1 г, а в маленькой – 0,11 г. Доктор прописал Робину-Бобину съесть ровно 20,13 г антивещества. Сможет ли Робин-Бобин выполнить предписание доктора, съев хотя бы по одной таблетке каждого вида? |
Страница: << 1 2 [Всего задач: 7]
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
Страница: << 1 2 [Всего задач: 7] |
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|