ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Каждое ребро правильного тетраэдра разделено на три равные части. Через каждую полученную точку деления проведены две плоскости, параллельные соответственно двум граням тетраэдра, не проходящим через эту точку. На сколько частей построенные плоскости разбивают тетраэдр?

Вниз   Решение


Диагонали трапеции ABCD с основаниями AD и BC пересекаются в точке O; точки B' и C' симметричны вершинам B и C относительно биссектрисы угла BOC. Докажите, что  $ \angle$C'AC = $ \angle$B'DB.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 105146

Темы:   [ Геометрия на клетчатой бумаге ]
[ Раскраски ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4-
Классы: 7,8,9

Можно ли покрасить некоторые клетки доски 8×8 так, чтобы в любом квадрате 3×3 было ровно 5 закрашенных клеток, а в каждом прямоугольнике 2×4 (вертикальном или горизонтальном) – ровно 4 закрашенные клетки?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .