ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 105179

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
[ Произведения и факториалы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4
Классы: 8,9,10

Назовём натуральное число разрешённым, если оно имеет не более 20 различных простых делителей. В начальный момент имеется куча из 2004! камней. Два игрока по очереди забирают из кучи некоторое разрешённое количество камней (возможно, каждый раз новое). Побеждает тот, кто заберёт последние камни. Кто выигрывает при правильной игре?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .