Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 4556]
Выразите площадь треугольника
ABC через длину
стороны
BC и величины углов
B и
C.
Даны две пересекающиеся окружности радиуса
R, причем
расстояние между их центрами больше
R. Докажите, что
β = 3α (рис.).
Найдите все треугольники, у которых углы образуют
арифметическую прогрессию, а стороны: а) арифметическую прогрессию;
б) геометрическую прогрессию.
Докажите, что точка
X лежит на прямой
AB тогда и только тогда,
когда
=
t + (1 -
t)
для некоторого
t
и любой точки
O.
Дано несколько точек и для некоторых пар (
A,
B) этих точек взяты
векторы
, причем в каждой точке начинается столько же
векторов, сколько в ней заканчивается. Докажите, что сумма всех
выбранных векторов равна
.
Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 4556]