Страница:
<< 1 2 [Всего задач: 8]
Задача
108225
(#05.5.10.6)
|
|
Сложность: 5- Классы: 8,9
|
В остроугольном треугольнике проведены высоты AA' и BB'. На дуге ACB описанной окружности треугольника ABC выбрана точка D. Пусть прямые AA' и BD пересекаются в точке P, а прямые BB' и AD пересекаются в точке Q. Докажите, что прямая A'B' проходит через середину отрезка PQ.
Задача
109828
(#05.5.10.7)
|
|
Сложность: 5- Классы: 7,8,9,10
|
Натуральные числа x и y таковы, что 2x² – 1 = y15. Докажите, что если x > 1, то x делится на 5.
Задача
109829
(#05.5.10.8)
|
|
Сложность: 5 Классы: 8,9,10
|
На бесконечном белом листе клетчатой бумаги конечное число клеток окрашено в чёрный цвет так, что у каждой чёрной клетки чётное число (0, 2 или 4) белых
клеток, соседних с ней по стороне. Докажите, что каждую белую клетку можно окрасить в красный или зелёный цвет так, чтобы у каждой чёрной клетки стало поровну красных и зелёных клеток, соседних с ней по стороне.
Страница:
<< 1 2 [Всего задач: 8]