ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Классы:
|
|||||||||||||||||||||||||||||
Страница: << 1 2 3 [Всего задач: 12]
Cерединные перпендикуляры к сторонам BC и AC остроугольного треугольника ABC пересекают прямые AC и BC в точках M и N. Пусть точка C движется по описанной окружности треугольника ABC, оставаясь в одной полуплоскости относительно AB (при этом точки A и B неподвижны). Докажите, что прямая MN касается фиксированной окружности.
B треугольнике ABC точка O – центр описанной окружности. Прямая a проходит через середину высоты треугольника, опущенной из вершины A, и параллельна OA. Aналогично определяются прямые b и c. Докажите, что эти три прямые пересекаются в одной точке.
Страница: << 1 2 3 [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке