Страница: 1
2 >> [Всего задач: 6]
Два равносторонних треугольника ABC и CDE имеют общую вершину (см. рис). Найдите угол между прямыми AD и BE.
Дан квадратный лист бумаги со стороной 1. Отмерьте на этом листе расстояние ⅚ (лист можно сгибать, в том числе, по любому отрезку с концами на краях бумаги и разгибать обратно; после разгибания на бумаге остаётся след от линии сгиба).
Две окружности w1 и w2
пересекаются в точках A и B. К ним через точку A
проводятся касательные l1 и l2 (соответственно).
Перпендикуляры, опущенные из точки B на l2 и l1,
вторично пересекают окружности w1 и w2
соответственно в точках K и N. Докажите, что точки K, A и
N лежат на одной прямой.
Дан равнобедренный треугольник ABC с основанием AC. H –
точка пересечения высот. На сторонах AB и BC выбраны точки M и K и соответственно так,
что ∠KMH = 90°. Докажите, что из отрезков AK, CM и MK можно сложить прямоугольный
треугольник.
На сторонах AB и CD квадрата ABCD взяты точки K и
M соответственно, а на диагонали AC – точка L так, что ML = KL.
Пусть P – точка пересечения отрезков MK и BD.
Найдите угол KPL.
Страница: 1
2 >> [Всего задач: 6]