Страница: << 1 2 [Всего задач: 8]
Задача
116568
(#11.6)
|
|
Сложность: 4 Классы: 10,11
|
Остроугольный треугольник ABC вписан в окружность ω. Касательные к ω, проведённые через точки B и C, пересекают касательную к ω, проведённую через точку A, в точках K и L соответственно. Прямая, проведённая через K параллельно AB, пересекается с прямой, проведённой через L параллельно AC, в точке P. Докажите, что BP = CP.
Задача
116569
(#11.7)
|
|
Сложность: 4+ Классы: 10,11
|
Вася нарисовал на плоскости несколько окружностей и провёл всевозможные
общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?
Задача
116570
(#11.8)
|
|
Сложность: 4- Классы: 10,11
|
Даны положительные числа b и c. Докажите неравенство (b – c)2011(b + c)2011(c – b)2011 ≥ (b2011 – c2011)(b2011 + c2011)(c2011 – b2011).
Страница: << 1 2 [Всего задач: 8]