ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 65454

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9

Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений).
Обязательно ли какие-то два из этих треугольников расположены так, что образуют прямоугольник?

Прислать комментарий     Решение

Задача 65458

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Пусть p – простое число. Сколько существует таких натуральных n, что pn делится на  p + n?

Прислать комментарий     Решение

Задача 65461

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.).

  а) Придумайте выдающийся многоугольник из четырёх клеток.
  б) При каких  n > 4  существует выдающийся многоугольник из n клеток?

Прислать комментарий     Решение

Задача 65462

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
  а)  k = 9;   б)  k = 8?

Прислать комментарий     Решение

Задача 65463

Темы:   [ Неравенство треугольника (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма длин любых двух медиан произвольного треугольника
  а) не больше ¾ P, где P – периметр этого треугольника;
  б) не меньше ¾ p, где p – полупериметр этого треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .