Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 46]
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны параллелограмм ABCD и такая точка K, что AK = BD. Точка M – середина CK. Докажите, что ∠BMD = 90°.
|
|
Сложность: 3+ Классы: 8,9,10
|
Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наименьшее количество ягод может оставить медвежатам лиса?
|
|
Сложность: 3+ Классы: 9,10,11
|
Две параболы с различными вершинами являются графиками квадратных трёхчленов со старшими коэффициентами p и q. Известно, что вершина каждой из парабол лежит на другой параболе. Чему может быть равно p + q?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наибольшее количество ягод может съесть лиса?
|
|
Сложность: 3+ Классы: 8,9,10
|
Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 46]