ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66109  (#1)

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 3+
Классы: 7,8,9

В шахматном турнире было 10 участников. В каждом туре участники разбивались на пары и в каждой паре играли друг с другом одну игру. В итоге каждый участник сыграл с каждым ровно один раз, причём не меньше чем в половине всех игр участники были земляками (из одного города). Докажите, что в каждом туре хоть одна игра была между земляками.

Прислать комментарий     Решение

Задача 66110  (#2)

Темы:   [ Невыпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Можно ли нарисовать на клетчатой бумаге многоугольник и поделить его на две равные части разрезом такой формы, как показано на рисунке
  а) слева;  б) в центре;  в) справа?

(Во всех пунктах разрез лежит внутри многоугольника, на границу выходят только концы разреза. Стороны многоугольника и звенья разреза идут по линиям сетки, маленькие звенья в два раза короче больших.)

Прислать комментарий     Решение

Задача 66111  (#3)

Темы:   [ Ограниченность, монотонность ]
[ Примеры и контрпримеры. Конструкции ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11

Взяли несколько положительных чисел и построили по ним такую последовательность: a1 – сумма исходных чисел, a2 – сумма квадратов исходных чисел, a3 – сумма кубов исходных чисел, и т.д.
  а) Могло ли случиться, что до a5 последовательность убывает  (a1 > a2 > a3 > a4 > a5),  а начиная с a5 – возрастает  (a5 < a6 < a7 < ...)?
  б) А могло ли случиться наоборот: до a5 последовательность возрастает, а начиная с a5 – убывает?

Прислать комментарий     Решение

Задача 66112  (#4)

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Автор: Обухов Б.

В выпуклом шестиугольнике ABCDEF все стороны равны, а также  AD = BE = CF.  Докажите, что в этот шестиугольник можно вписать окружность.

Прислать комментарий     Решение

Задача 66113  (#5)

Темы:   [ Взвешивания ]
[ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9,10

Вес каждой гирьки набора – нецелое число грамм. Ими можно уравновесить любой целый вес от 1 г до 40 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каково наименьшее число гирь в таком наборе?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .