ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 66943

Темы:   [ Теоремы Чевы и Менелая ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Tran Quang Hung

В треугольник $ABC$ вписана окружность с центром $I$, касающаяся сторон $CA$, $AB$ в точках $E$, $F$ соответственно. Точки $M$, $N$ на прямой $EF$ таковы, что $CM=CE$ и $BN=BF$. Прямые $BM$ и $CN$ пересекаются в точке $P$. Докажите, что прямая $PI$ делит пополам отрезок $MN$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .