Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 67260

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Арифметические функции (прочее) ]
Сложность: 5
Классы: 9,10,11

Дано натуральное число n. Для произвольного числа x рассмотрим сумму Q(x)=x+x2+x3+x4++x10n. Найдите разность Q\left(10^{n}\right)-Q\left(10^{n}-1\right). (Здесь \lfloor x\rfloor обозначает целую часть числа x, то есть наибольшее целое число, не превосходящее x.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .