Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 737]
Имеются чашечные весы без гирь и 3 одинаковые по внешнему виду монеты, одна из которых фальшивая: она легче настоящих (настоящие монеты одного веса). Сколько надо взвешиваний, чтобы определить фальшивую монету?
На столе лежат в ряд пять монет: средняя — вверх орлом, а остальные — вверх решкой. Разрешается одновременно перевернуть три рядом лежащие монеты. Можно ли при помощи нескольких таких переворачиваний все пять монет положить вверх орлом?
Фили и Кили играют в шахматы. Кроме шахматной доски у них есть одна ладья, которую они поставили в правый нижний угол, и делают ей ходы по очереди, причем ходить разрешается только вверх или влево (на любое количество клеток). Кто не может сделать хода, тот проиграл. Кили ходит первым. Кто выиграет при правильной игре?
У Юры есть калькулятор, который позволяет умножать число на 3,
прибавлять к числу 3 или (если число делится на 3 нацело) делить на 3.
Как на этом калькуляторе получить из числа 1 число 11?
|
|
Сложность: 2 Классы: 6,7,8
|
В вершинах шестиугольника ABCDEF (см. рис.) лежали 6 одинаковых на вид шариков:
в A — массой 1 г, в B — 2 г, ..., в F — 6 г.
Шутник поменял местами два шарика в
противоположных вершинах. Имеются двухчашечные весы, позволяющие узнать, в какой из
чаш масса шариков больше. Как за одно взвешивание определить, какие именно шарики
переставлены?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 737]