Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 604]      



Задача 53920

Темы:   [ Хорды и секущие (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Найдите угол между радиусами OA и OB, если расстояние от центра O окружности до хорды AB:  а) вдвое меньше AB;  б) вдвое меньше OA.

Прислать комментарий     Решение

Задача 53933

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Докажите, что окружность, построенная на боковой стороне равнобедренного треугольника как на диаметре, проходит через середину основания.

Прислать комментарий     Решение

Задача 53934

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Окружность, построенная на стороне треугольника как на диаметре, проходит через середину другой стороны. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Задача 53950

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Точки A, B, C и D последовательно расположены на окружности, причём центр O окружности расположен внутри четырёхугольника ABCD. Точки K, L, M и N – середины отрезков AB, BC, CD и AD соответственно. Докажите, что  ∠KON + ∠MOL = 180°.

Прислать комментарий     Решение

Задача 53963

Темы:   [ Окружность, вписанная в угол ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

Две прямые касаются окружности с центром O в точках A и B и пересекаются в точке C. Найдите угол между этими прямыми, если  ∠ABO = 40°.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .