Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 126]
а) Можно ли квадрат
6×6 замостить костями домино
1×2 так, чтобы не было к швак, т. е. прямой, не
разрезающей костей?
б) Докажите, что любой прямоугольник
m×
n, где
m и
n
больше 6 и
mn четно, можно замостить костями домино так, чтобы
не было к швак.
в) Докажите, что прямоугольник
6×8 можно замостить
костями домино так, чтобы не было к швак.
Можно ли разрезать на четыре остроугольных треугольника
а) какой-нибудь выпуклый пятиугольник,
б) правильный пятиугольник.
|
|
Сложность: 3- Классы: 7,8,9
|
Прямая раскрашена в два цвета. Докажите, что найдётся отрезок, оба конца и середина которого покрашены в один и тот же цвет.
|
|
Сложность: 3- Классы: 6,7,8,9
|
Прямая раскрашена в два цвета.
Докажите, что на ней найдутся такие три точки A, B и C, окрашенные в один цвет, что точка B является серединой отрезка AC.
Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то n ≤ 4.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 126]