Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Придумайте какое-либо взаимно-однозначное соответствие между разбиениями натурального числа на различные и на нечётные слагаемые.
|
|
Сложность: 4 Классы: 9,10,11
|
В стране есть n > 1 городов, некоторые пары городов соединены двусторонними беспосадочными авиарейсами. При этом между каждыми двумя городами существует единственный авиамаршрут (возможно, с пересадками). Мэр каждого города X подсчитал количество таких нумераций всех городов числами от 1 до n, что на любом авиамаршруте, начинающемся в X, номера городов идут в порядке возрастания. Все мэры, кроме одного, заметили, что их результаты подсчётов делятся на 2016. Докажите, что и у оставшегося мэра результат также делится на 2016.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Можно ли расставить во всех точках плоскости с целыми координатами
натуральные числа так, чтобы каждое натуральное число стояло в какой-нибудь
точке, и чтобы на каждой прямой, проходящей через две точки с целыми координатами, но не проходящей через начало координат, расстановка чисел была периодической?
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]