Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 1119]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В футбольном турнире участвовало 20 команд (каждая сыграла с каждой из остальных по одному матчу). Могло ли в результате оказаться так, что каждая из команд-участниц выиграла столько же матчей, сколько сыграла вничью?
Можно ли в клетках таблицы 19×19 отметить несколько клеток так, чтобы во всех квадратах 10×10 было разное количество отмеченных клеток?
Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз).
Могли ли оказаться отмечены
а) все числа, кроме, быть может, двух?
б) все числа, кроме, быть может, одного?
в) все числа?
|
|
Сложность: 3+ Классы: 9,10,11
|
В шахматном турнире было 12 участников (каждый сыграл с каждым по одному разу).
По итогам турнира оказалось, что есть 9 участников, каждый из которых набрал не более 4 очков. Известно, что Петя набрал ровно 9 очков. Как он сыграл с каждым из двух остальных шахматистов? (Победа – 1 очко, ничья – 0,5 очка, поражение – 0 очков.)
|
|
Сложность: 3+ Классы: 7,8,9
|
Какое наибольшее количество клеток можно отметить на шахматной доске так, чтобы с каждой из них на любую другую отмеченную клетку можно было пройти ровно двумя ходами шахматного коня?
Страница: << 100 101 102 103 104 105 106 >> [Всего задач: 1119]