Страница:
<< 28 29 30 31 32 33 34 [Всего задач: 168]
|
|
Сложность: 5- Классы: 8,9,10
|
Сумма n положительных чисел x1, x2, x3, ..., xn равна 1.
Пусть S – наибольшее из чисел
Найдите наименьшее возможное значение S. При каких значениях x1, x2, ..., xn оно достигается?
|
|
Сложность: 5+ Классы: 9,10,11
|
Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
а) Какие коробки следует купить при n = 10 и k = 3 ?
б) Тот же вопрос для произвольных натуральных n ≥ k.
Грани кубика занумерованы 1, 2, 3, 4, 5, 6, так, что сумма номеров на
противоположных гранях кубика равна 7. Дана шахматная доска 50×50
клеток, каждая клетка равна грани кубика. Кубик перекатывается из левого
нижнего угла доски в правый верхний. При перекатывании он каждый раз
переваливается через свое ребро на соседнюю клетку, при этом разрешается
двигаться только вправо или вверх (нельзя двигаться влево или вниз). На каждой
из клеток на пути кубика имеется номер грани, которая опиралась на эту клетку.
Какое наибольшее значение может принимать сумма всех написанных чисел? Какое
наименьшее значение она может принимать?
Страница:
<< 28 29 30 31 32 33 34 [Всего задач: 168]