|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Диаметр PQ и перпендикулярная ему хорда RS пересекаются в точке A. Точка C лежит на окружности, а точка B — внутри окружности, причем BC || PQ и BC = RA. Из точек A и B опущены перпендикуляры AK и BL на прямую CQ. Докажите, что SACK = SBCL. |
Страница: 1 [Всего задач: 1]
Дана описанная четырёхугольная пирамида ABCDS. Противоположные стороны основания пересекаются в точках P и Q, причём точки A и B лежат на отрезках PD и PC. Вписанная сфера касается боковых граней ABS и BCS в точках K и L. Докажите, что если прямые PK и QL пересекаются, то точка касания сферы и основания лежит на отрезке BD.
Страница: 1 [Всего задач: 1] |
||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|