ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что  AM = AN.

Вниз   Решение


В ромб, одна из диагоналей которого равна 20 см, вписан круг радиуса 6 см. Вычислите площадь части ромба, расположенной вне круга. Будет ли эта площадь больше 36 см2 ? (Ответ обосновать.)

ВверхВниз   Решение


Биссектриса внутреннего угла при вершине A и биссектриса внешнего угла при вершине C треугольника ABC пересекаются в точке M.
Найдите ∠BMC, если  ∠BAC = 40°.

ВверхВниз   Решение


На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске?

ВверхВниз   Решение



Диагональ прямоугольного параллелепипеда равна a и составляет с одной гранью угол 30o, а с другой 45o. Найдите его объем.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 21641]      



Задача 56826

Тема:   [ Треугольники (прочее) ]
Сложность: 2-
Классы: 7,8

а) Докажите, что если в треугольнике медиана совпадает с высотой, то этот треугольник равнобедренный.

б) Докажите, что если в треугольнике биссектриса совпадает с высотой, то этот треугольник равнобедренный.
Прислать комментарий     Решение


Задача 56827

Тема:   [ Треугольники (прочее) ]
Сложность: 2-
Классы: 7,8

Докажите, что биссектрисы треугольника пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57005

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что выпуклый четырехугольник ABCD можно вписать в окружность тогда и только тогда, когда  $ \angle$ABC + $ \angle$CDA = 180o.
Прислать комментарий     Решение


Задача 57006

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

Докажите, что в выпуклый четырехугольник ABCD можно вписать окружность тогда и только тогда, когда  AB + CD = BC + AD.
Прислать комментарий     Решение


Задача 57007

Тема:   [ Многоугольники (прочее) ]
Сложность: 2-
Классы: 8,9

а) Докажите, что оси симметрии правильного многоугольника пересекаются в одной точке.

б) Докажите, что правильный 2n-угольник имеет центр симметрии.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 21641]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .