ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 187]      



Задача 116484

Темы:   [ Арифметика остатков (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 7,8,9

Незнайка утверждает, что существует восемь таких последовательных натуральных чисел, что в разложение их на простые множители каждый множитель входит в нечётной степени (например, два таких последовательных числа:  23 = 231  и  24 = 2³·31).  Прав ли он?

Прислать комментарий     Решение

Задача 116922

Темы:   [ Тождественные преобразования ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 8,9

Автор: Фольклор

Известно, что числа а, b, c и d – целые и  .  Может ли выполняться равенство  аbcd = 2012?

Прислать комментарий     Решение

Задача 34971

Темы:   [ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3
Классы: 8,9,10

Найдите все целые решения уравнения  yk = x² + x,  где k – фиксированное натуральное число, большее 1.

Прислать комментарий     Решение

Задача 35309

Темы:   [ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3
Классы: 7,8,9

У капитана Смоллетта двое сыновей и несколько дочерей. Если возраст капитана (конечно, ему меньше ста лет) умножить на количество его детей и на длину его шхуны (это целое число футов), то получится 32118. Сколько лет капитану Смоллетту, сколько у него детей и какова длина его корабля?

Прислать комментарий     Решение

Задача 60439

Темы:   [ Формула включения-исключения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9

Сколько существует целых чисел от 1 до 33000, которые не делятся ни на 3, ни на 5, но делятся на 11?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 187]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .