ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 205]      



Задача 116968

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 5,6,7

Некоторые жители Острова Разноцветных Лягушек говорят только правду, а остальные всегда лгут. Трое островитян сказали так:
  Бре: На нашем острове нет синих лягушек.
  Ке: Бре лгун. Он же сам синяя лягушка!
  Кекс: Конечно, Бре лгун. Но он красная лягушка.
Водятся ли на этом острове синие лягушки?

Прислать комментарий     Решение

Задача 117001

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 5,6,7

Автор: Усов С.В.

В семье весёлых гномов папа, мама и ребёнок. Имена членов семьи: Саша, Женя и Валя. За обеденным столом два гнома сделали по два заявления.
  Валя: "Женя и Саша разного пола. Женя и Саша – мои родители".
  Саша: "Я – отец Вали. Я – дочь Жени".
Восстановите имя и отчество гнома-ребёнка, если известно, что каждый гном один раз сказал правду, и один раз пошутил.

Прислать комментарий     Решение

Задача 117011

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 5,6,7

Карлсон открыл школу, и 1 сентября во всех трёх первых классах было по три урока: Курощение, Низведение и Дуракаваляние. Один и тот же предмет в двух классах одновременно идти не может. Курощение в 1Б было первым уроком. Учитель Дуракаваляния похвалил учеников 1Б: "У вас получается еще лучше, чем у 1А". Низведение на втором уроке было не в 1А. В каком классе валяли дурака на последнем уроке?

Прислать комментарий     Решение

Задача 32794

Тема:   [ Математическая логика (прочее) ]
Сложность: 3
Классы: 7,8,9

(Продолжение задачи 32792)
Путешественник, попавший в государство, встретил четырех людей из задачи 3 и задал им вопрос:"Кто вы?".   Он получил такие ответы:
1-ый: "Все мы лжецы".
2-ой: "Среди нас 1 лжец".
3-ий: "Среди нас 2 лжеца".
4-ый: "Я ни разу не соврал и сейчас не вру".
Путешественник быстро сообразил, кем является четвертый житель. Как он это сделал?
Прислать комментарий     Решение


Задача 64305

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 6,7

Автор: Шноль Д.Э.

На острове Правландия все жители могут ошибаться, но младшие никогда не противоречат старшим, а когда старшие противоречат младшим, они (старшие) не ошибаются. Между жителями A, Б и В произошёл такой разговор:
  А: Б – самый высокий.
  Б: А – самый высокий.
  В: Я выше Б.
Следует ли из этого разговора, что чем моложе человек, тем он выше (для трёх говоривших)?

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 205]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .