Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 165]
|
|
Сложность: 4 Классы: 10,11
|
В углах шахматной доски 3 на 3 стоят кони: в верхних углах — белые, в
нижних — чёрные. Доказать, что для того, чтобы им поменяться местами,
потребуется не менее 16 ходов. (Кони не обязательно ходят сначала белый,
потом чёрный. Ходом считается ход одного коня.)
В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что максимальная скорость гангстера равна 2,9
максимальной скорости полицейского. Полицейский хочет оказаться вместе с
гангстером на одной стороне квадрата. Всегда ли он сможет этого добиться?
См. задачу 79385 а) и б).
|
|
Сложность: 4 Классы: 8,9,10
|
Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну
овцу?
[Сизифов труд]
|
|
Сложность: 4 Классы: 8,9,10,11
|
На горе 1001 ступенька, на некоторых лежат камни, по одному на ступеньке. Сизиф берёт любой камень и переносит его на ближайшую сверху свободную ступеньку (то есть, если следующая ступенька свободна то на неё, а если занята, то на несколько ступенек вверх до первой свободной). После этого Аид скатывает на одну ступеньку вниз один из камней, у которых предыдущая ступенька свободна. Камней 500, и первоначально они лежали на нижних 500 ступеньках. Сизиф и Аид действуют по очереди, начинает Сизиф. Его цель – положить камень на верхнюю ступеньку. Может ли Аид ему помешать?
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 165]