Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 737]
В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что максимальная скорость гангстера равна 2,9
максимальной скорости полицейского. Полицейский хочет оказаться вместе с
гангстером на одной стороне квадрата. Всегда ли он сможет этого добиться?
См. задачу 79385 а) и б).
В магазин привезли цистерну молока. У продавца имеются чашечные весы без гирь
(на чашки весов можно ставить фляги), а также три одинаковые фляги, две из
которых пустые, а в третьей налит 1 л молока. Как отлить в одну флягу ровно 85
л молока, сделав не более восьми взвешиваний?
Назовём "сложностью" данного числа наименьшую длину числовой
последовательности (если такая найдётся), которая начинается с нуля и
заканчивается этим числом, причём каждый следующий член последовательности
либо равен половине предыдущего, либо в сумме с предыдущим составляет 1.
Среди всех чисел вида
m/2
50, где
m = 1, 3, 5,..., 2
50 − 1, найти число с наибольшей "сложностью".
|
|
Сложность: 4 Классы: 8,9,10
|
Игра происходит на бесконечной плоскости. Играют двое: один передвигает одну фишку-волка, другой – 50 фишек-овец. После хода волка ходит одна из овец, затем, после следующего хода волка, опять какая-нибудь из овец и т. д. И волк, и овцы передвигаются за один ход в любую сторону не более, чем на один метр. Верно ли, что при любой первоначальной позиции волк поймает хотя бы одну
овцу?
Страница:
<< 78 79 80 81
82 83 84 >> [Всего задач: 737]