ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Имеются три пробирки, вместимостью 100 миллилитров каждая. Первые две пробирки имеют риски, одинаковые на обеих пробирках. Возле каждой риски надписано целое число миллилитров, которое вмещается в часть пробирки от дна до этой риски (см. рисунок).

Изначально первая пробирка содержит 100 миллилитров пива, а остальные две пусты. Требуется написать программу, которая выясняет, можно ли отделить в третьей пробирке один миллилитр пива, и если да, то находит минимально необходимое для этого число переливаний. Пиво можно переливать из одной пробирки в другую до тех пор, пока либо первая из них не станет пустой, либо одна из пробирок не окажется заполненной до какой-либо риски.



Входные данные

В первой строке входного файла содержится число рисок N (1 ≤ N ≤ 20), имеющихся на каждой из первых двух пробирок. Затем в порядке возрастания следуют N целых чисел V1 , ..., VN (1 ≤ Vi ≤ 100), приписанных рискам. Последняя риска считается сделанной на верхнем крае пробирок (VN = 100).

Выходные данные

В первой строке выходного файла должна содержаться строка «YES», если в третьей пробирке возможно отделить один миллилитр пива, и «NO» – в противном случае. В случае ответа «YES» во вторую строку необходимо вывести искомое количество переливаний.

Пример входного файла

4
13 37 71 100

Пример выходного файла

YES
8

   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 277]      



Задача 98792

 [Не составляемое число]
Темы:   [ Прочие задачи на сообразительность ]
[ Двоичный поиск ]
Сложность: 3

Задан массив натуральных чисел P[1:n]. Найти минимальное натуральное число, не представимое суммой никаких элементов массива P. Сумма может состоять и из одного слагаемого, но каждый элемент массива может входить в неё только один раз.

Прислать комментарий     Решение

Задача 102781

 [Ход конем ]
Темы:   [ Динамическое программирование (прочее) ]
[ Длинная арифметика как инструмент ]
Сложность: 3

Шахматная ассоциация решила оснастить всех своих сотрудников такими телефонными номерами, которые бы набирались на кнопочном телефоне ходом коня. Например, ходом коня набирается телефон 340-49-27. При этом телефонный номер не может начинаться ни с цифры 0, ни с цифры 8.
7 8 9
4 5 6
1 2 3
  0  

Напишите программу, определяющую количество телефонных номеров длины N, набираемых ходом коня.

Входные данные

Во входном файле записано целое число N (1 ≤ N ≤ 100).

Выходные данные

Выведите в выходной файл искомое количество телефонных номеров.

Пример входного файла

2

Пример выходного файла

16
Прислать комментарий     Решение


Задача 102890

 [Пиво в розлив]
Темы:   [ Обход графа в ширину ]
[ Построение перечислителя ]
Сложность: 3

Имеются три пробирки, вместимостью 100 миллилитров каждая. Первые две пробирки имеют риски, одинаковые на обеих пробирках. Возле каждой риски надписано целое число миллилитров, которое вмещается в часть пробирки от дна до этой риски (см. рисунок).

Изначально первая пробирка содержит 100 миллилитров пива, а остальные две пусты. Требуется написать программу, которая выясняет, можно ли отделить в третьей пробирке один миллилитр пива, и если да, то находит минимально необходимое для этого число переливаний. Пиво можно переливать из одной пробирки в другую до тех пор, пока либо первая из них не станет пустой, либо одна из пробирок не окажется заполненной до какой-либо риски.



Входные данные

В первой строке входного файла содержится число рисок N (1 ≤ N ≤ 20), имеющихся на каждой из первых двух пробирок. Затем в порядке возрастания следуют N целых чисел V1 , ..., VN (1 ≤ Vi ≤ 100), приписанных рискам. Последняя риска считается сделанной на верхнем крае пробирок (VN = 100).

Выходные данные

В первой строке выходного файла должна содержаться строка «YES», если в третьей пробирке возможно отделить один миллилитр пива, и «NO» – в противном случае. В случае ответа «YES» во вторую строку необходимо вывести искомое количество переливаний.

Пример входного файла

4
13 37 71 100

Пример выходного файла

YES
8
Прислать комментарий     Решение


Задача 102922

 [Идем кругами ]
Темы:   [ Перебор с отсечениями ]
[ Эйлеров цикл ]
Сложность: 3+

Игровое поле представляет собой N кружков, некоторые из которых соединены отрезками. Каждому кружку приписана какая-то стоимость, а на каждом отрезке поставлена стрелка. Один из кружков является начальным, другой – конечным. Игрок должен переместить фишку из начального кружка в конечный, пройдя по каждому из отрезков ровно один раз. За перемещение по отрезку он получает определенное количество очков, равное стоимости кружка, в который он перемещается, взятой со знаком плюс, если движение происходит по направлению стрелки, и со знаком минус – если в противоположном. 

Требуется определить максимальное количество очков, которое может набрать игрок в этой игре.

Входные данные

Входной файл содержит исходные данные в следующей последовательности: N, x1, x2, ..., xN, b, q, M, u1, v1, u2, v2, ..., uM, vM. Здесь N – количество кружков (1 ≤ N ≤ 30), xi – стоимость, приписанная i-му кружку (1 ≤ xi ≤ 30 000), b и q – номера начального и конечного кружков (они могут совпадать), M – количество отрезков, ui и vi – номера кружков, соединяемых i-м отрезком (направление стрелки – от ui к vi). Два кружка могут быть соединены не более чем одним отрезком. Все числа во входном файле являются целыми и разделяются пробелами и/или символами перевода строки.

Выходные данные

Вывести в выходной файл искомое количество очков и номера кружков, по которым должен пройти игрок, чтобы набрать это количество. Номера кружков должны быть записаны в порядке их посещения игроком. Если пройти из начального кружка в конечный, удовлетворяя правилам игры, невозможно, выходной файл должен содержать единственную строку «NO SOLUTION».

Пример входного файла

5 1 3 5 100 23
1 4
5
1 2
2 3
5 3
2 5
4 2

Пример выходного файла

-72
1 2 5 3 2 4
Прислать комментарий     Решение


Задача 102942

 [Кратчайший путь в квадрате]
Темы:   [ Прямая и отрезок ]
[ Кратчайшие пути в графах ]
Сложность: 3+

Внутрь квадрата с координатами левого нижнего угла (0, 0) и координатами правого верхнего угла (100, 100) поместили N квадратиков, стороны которых параллельны осям координат и имеют длину 5. Никакие два квадратика не имеют общих точек. Необходимо найти кратчайший путь из точки (0, 0) в точку (100, 100), который бы не пересекал ни одного из этих N квадратиков.

Входные данные

В первой строке входного файла содержится целое число N (1 ≤ N ≤ 30), в каждой следующих N строк – координаты левого нижнего угла (x, y) очередного из квадратиков (0 ≤ x, y ≤ 95).

Выходные данные

Выведите в выходной файл координаты точек искомого пути, в которых меняется направление движения (включая начальную и конечную точки). Порядок точек в выходном файле должен соответствовать порядку точек в пути.

Пример входного файла

5
5 5
5 15
15 10
15 20
90 90

Пример выходного файла

0 0
5 10
20 20
95 90
100 100
Прислать комментарий     Решение


Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 277]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .