ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Во всех подъездах дома одинаковое число этажей, а на каждом этаже одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нём 105 квартир?

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 2440]      



Задача 103783

Темы:   [ Уравнения в целых числах ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 2
Классы: 7

Во всех подъездах дома одинаковое число этажей, а на каждом этаже одинаковое число квартир. При этом число этажей в доме больше числа квартир на этаже, число квартир на этаже больше числа подъездов, а число подъездов больше одного. Сколько этажей в доме, если всего в нём 105 квартир?

Прислать комментарий     Решение

Задача 103898

Тема:   [ Признаки делимости (прочее) ]
Сложность: 2
Классы: 7,8

Ваня задумал простое трёхзначное число, все цифры которого различны.
На какую цифру оно может оканчиваться, если его последняя цифра равна сумме первых двух?

Прислать комментарий     Решение

Задача 103945

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2
Классы: 5,6,7

Конфеты "Сладкая математика" продаются по 12 штук в коробке, а конфеты "Геометрия с орехами" – по 15 штук в коробке.
Какое наименьшее число коробок конфет того и другого сорта необходимо купить, чтобы тех и других конфет было поровну?

Прислать комментарий     Решение

Задача 107672

Темы:   [ Признаки делимости на 2 и 4 ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 7,8,9

Подряд без пробелов выписали все чётные числа от 12 до 34. Получилось число 121416182022242628303234. Делится ли оно на 24?

Прислать комментарий     Решение

Задача 115462

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2
Классы: 6,7,8

Произведение двух натуральных чисел, каждое из которых не делится нацело на 10, равно 1000. Найдите их сумму.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .