ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 2440]      



Задача 30313

Тема:   [ Четность и нечетность ]
Сложность: 2+
Классы: 6,7

Можно ли выписать в ряд по одному разу цифры от 1 до 9 так, чтобы между единицей и двойкой, двойкой и тройкой, ..., восьмёркой и девяткой было нечётное число цифр?

Прислать комментарий     Решение

Задача 30360

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 6,7,8

Докажите, что произведение любых пяти последовательных чисел делится   а) на 30;   б) на 120.

Прислать комментарий     Решение

Задача 30366

Темы:   [ Признаки делимости на 11 ]
[ Ребусы ]
Сложность: 2+
Классы: 6,7,8

Вася написал на доске пример на умножение двух двузначных чисел, а затем заменил в нем все цифры на буквы, причём одинаковые цифры – на одинаковые буквы, а разные – на разные. В итоге у него получилось  АБ×ВГ = ДДЕЕ.  Докажите, что он где-то ошибся.

Прислать комментарий     Решение

Задача 30369

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 2+
Классы: 6,7,8

Решите в натуральных числах уравнение:
  а)  x² – y² = 31;
  б)  x² – y² = 303.

Прислать комментарий     Решение

Задача 30371

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8

Докажите, что для любых натуральных чисел a и b верно равенство  НОД(a, b)НОК(a, b) = ab.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .