ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

См. задачу 73546 а).

Вниз   Решение


На ребре BB1 куба ABCDA1B1C1D1 взята точка F так, что B1F = BB1 , на ребре C1D1 – точка E так, что D1E = C1D1 . Какое наибольшее значение может принимать отношение , где точка P лежит на луче DE , а точка Q – на прямой A1F ?

ВверхВниз   Решение


Сумма чисел a1, a2, a3, каждое из которых больше единицы, равна S, причём     для любого  i = 1, 2, 3.
Докажите, что  

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 78522

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9,10

Известно, что при любом целом  K ≠ 27  число  a – K³  делится на  27 – K. Найти a.

Прислать комментарий     Решение

Задача 78526

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9,10

Известно, что при любом целом  K ≠ 27  число  a – K1964  делится без остатка на  27 – K. Найти a.

Прислать комментарий     Решение

Задача 109569

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тождественные преобразования ]
Сложность: 3+
Классы: 7,8,9

Докажите тождество

+ +..+ = = + +..+ .

Прислать комментарий     Решение

Задача 30893

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 6,7

Докажите, что   .

Прислать комментарий     Решение

Задача 109832

Темы:   [ Алгебраические неравенства (прочее) ]
[ Тождественные преобразования ]
[ Неравенства. Метод интервалов ]
Сложность: 4-
Классы: 8,9,10

Сумма чисел a1, a2, a3, каждое из которых больше единицы, равна S, причём     для любого  i = 1, 2, 3.
Докажите, что  

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .