ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика" Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости даны n красных и n синих точек,
никакие три из которых не лежат на одной прямой. Докажите,
что можно провести n отрезков с разноцветными концами, не имеющих
общих точек.
В треугольнике ABC проведена высота AH, а из вершин B и C опущены перпендикуляры BB1 и CC1 на прямую, проходящую через точку A. Постройте треугольник ABC, зная три
точки A', B', C', симметричные точке пересечения высот
треугольника относительно сторон BC, CA, AB (оба
треугольника остроугольные).
В ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа. |
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 504]
Общество из n членов выбирает из своего состава одного представителя.
На полке стоит 12 книг. Сколькими способами можно выбрать из них пять книг, никакие две из которых не стоят рядом?
а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?
В ряд выписаны числа 1, 2, 3, ..., n. За один ход разрешается поменять местами любые два числа.
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 504]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке