ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Найдите все трехзначные числа, каждая натуральная степень которых оканчивается на три цифры, составляющие первоначальное число.

Вниз   Решение


Сформулируйте (и докажите) условие, позволяющее определить четность числа по его записи

а) в троичной системе счисления;

б) в системе счисления с основанием n.

Вверх   Решение

Задачи

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 598]      



Задача 116793

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 5,6

Коля утверждает, что можно выяснить, делится ли на 101 сумма всех четырёхзначных чисел, в записи которых нет ни цифры 0, ни цифры 9, не вычисляя самой суммы. Прав ли Коля?

Прислать комментарий     Решение

Задача 78188

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 4
Классы: 7,8,9

На какое целое число надо умножить 999 999 999, чтобы получить число, состоящее из одних единиц?
Прислать комментарий     Решение


Задача 30645

Тема:   [ Десятичная система счисления ]
Сложность: 4
Классы: 8,9

Найдите все трехзначные числа, каждая натуральная степень которых оканчивается на три цифры, составляющие первоначальное число.

Прислать комментарий     Решение


Задача 30647

Тема:   [ Десятичная система счисления ]
Сложность: 4
Классы: 8,9

Докажите, что все числа ряда являются составными.

Прислать комментарий     Решение


Задача 30834

Тема:   [ Системы счисления ]
Сложность: 4
Классы: 8,9

Сформулируйте (и докажите) условие, позволяющее определить четность числа по его записи

а) в троичной системе счисления;

б) в системе счисления с основанием n.

Прислать комментарий     Решение

Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 598]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .