ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На международный конгресс приехало 578 делегатов из разных стран. Любые три делегата могут поговорить между собой без помощи остальных (при этом, возможно, одному из них придется переводить разговор двух других). Докажите, что всех делегатов можно поселить в двухместных номерах гостиницы таким образом, чтобы любые двое, живущие в одном номере, могли поговорить без посторонней помощи. Решение |
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 737]
x1 = x . x = x2, x2 = x1 . x1 = x4, x3 = x2 . x2 = x8, x4 = x3 . x3 = x16.
Пусть
n = 2e1 + 2e2 +...+ 2er (e1 > e2 >...> er 0).
Придумайте алгоритм, который позволял
бы вычислять xn при помощи
b(n) = e1 + (n) - 1
умножений, где
(n) = r — число единиц в двоичном представлении числа
n.
Царь сообщил это придворному мудрецу и указал на один из мешков. Мудрец может вынимать из этого и из других мешков любое количество монет, но на вид они все одинаковы. Однако у мудреца есть большие двухчашечные весы без гирь (они точно покажут, равны ли веса на чашках, а если нет, то какая чашка тяжелее). Может ли мудрец определить, какие монеты в указанном мешке, сделав не более двух взвешиваний?
Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|