ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Последовательности
>>
Прогрессии
>>
Арифметическая прогрессия
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Натуральный ряд 1, 2, 3, ... разбит на несколько (конечное число) арифметических прогрессий. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 133]
б) Тот же вопрос про 100 чисел, дающих в сумме 5051.
Имеется бесконечная арифметическая прогрессия с натуральными членами. Доказать, что найдётся член, в котором есть 100 девяток подряд.
Васе на 23 февраля подарили 777 конфет. Вася хочет съесть все конфеты за n дней, причем так, чтобы каждый из этих дней (кроме первого, но включая последний) съедать на одну конфету больше, чем в предыдущий. Для какого наибольшего числа n это возможно?
Натуральный ряд разбит на n арифметических прогрессий (каждое натуральное число принадлежит ровно одной из этих n прогрессий). Пусть d1, d2, ..., dn – разности этих прогрессий. Докажите, что 1/d1 + 1/d2 + ... + 1/dn = 1.
Натуральный ряд 1, 2, 3, ... разбит на несколько (конечное число) арифметических прогрессий.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 133] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|