ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске выписаны числа 1, ½, ..., 1/n. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 199]
Дана некоторая тройка чисел. С любыми двумя из них разрешается проделывать следующее: если эти числа равны a и b, то их можно заменить на и . Можно ли с помощью таких операций получить тройку из тройки
См. задачу 73546 а).
На доске выписаны числа 1, ½, ..., 1/n. Разрешается стереть любые два числа a и b и заменить их на число ab + a + b.
На доске написаны числа
Круг разделён на шесть секторов, в каждом из которых лежит по селёдке. Разрешается за один ход передвинуть любые две селёдки в соседних секторах, двигая их в разные стороны. Можно ли с помощью этой операции собрать все селёдки в одном секторе?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 199] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|