ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На катетах AC и BC прямоугольного треугольника вне его построены квадраты ACDE и BCKF. Из точек E и F на продолжение гипотенузы опущены перпендикуляры EM и FN. Докажите, что  EM + FN = AB.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 53353

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Равные треугольники. Признаки равенства ]
Сложность: 3-
Классы: 8,9

Докажите равенство треугольников по стороне и высотам, опущенным на две другие стороны.

Прислать комментарий     Решение

Задача 53408

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Две высоты треугольника равны. Докажите, что треугольник равнобедренный.

Прислать комментарий     Решение

Задача 116167

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ Докажите, что  EF = FL.

Прислать комментарий     Решение

Задача 116499

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 7,8,9

В остроугольном треугольнике ABC на сторонах AC и AB отметили точки K и L соответственно, причём прямая KL параллельна BC и  KL = KC.  На стороне BC выбрана точка M так, что  ∠KMB = ∠BAC.  Докажите, что  KM = AL.

Прислать комментарий     Решение

Задача 53369

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

На катетах AC и BC прямоугольного треугольника вне его построены квадраты ACDE и BCKF. Из точек E и F на продолжение гипотенузы опущены перпендикуляры EM и FN. Докажите, что  EM + FN = AB.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .