ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Треугольники ACC1 и BCC1 равны. Их вершины A и B лежат по разные стороны от прямой CC1. На окружности отмечено 100 точек. Может ли при этом оказаться ровно 1000 прямоугольных треугольников, все вершины которых — отмеченные точки? Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения n числа n, n - 50, n + 1987 принадлежали трём разным подмножествам? Докажите, что треугольники abc и a'b'c' собственно подобны, тогда и только тогда, когда
a'(b - c) + b'(c - a) + c'(a - b) = 0.
Пусть A — произвольный угол, B и C — острые углы. Всегда ли существует такой угол X, что
sin X =
(Из `` Воображаемой геометрии'' Н. И. Лобачевского).
На одной из медиан треугольника $ABC$ нашлась такая точка $P$, что $\angle PAB=\angle PBC=\angle PCA$. Докажите, что на другой медиане найдется такая точка $Q$, что $\angle QBA=\angle QCB=\angle QAC$. Пусть x, y, z – любые числа из интервала (0, π/2). Докажите неравенство На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая. Назовём непустое (конечное или бесконечное) множество A, состоящее из действительных чисел, полным, если для любых действительных a и b (не обязательно различных и не обязательно лежащих в A), при которых a + b лежит в A, число ab также лежит в A. Найдите все полные множества действительных чисел. С помощью одного циркуля постройте окружность, проходящую через три данные точки.
Докажите, что прямая, проходящая через точки a1 и a2, задаётся уравнением
z(
Пусть
|
Страница: << 1 2 3 4 >> [Всего задач: 16]
В остроугольном треугольнике ABC проведены
высоты
AA1, BB1 и CC1. Докажите, что периметр
треугольника A1B1C1 не превосходит половины периметра
треугольника ABC.
Докажите, что треугольник со сторонами a, b и c
остроугольный тогда и только тогда, когда
a2 + b2 + c2 > 8R2.
Докажите, что треугольник остроугольный тогда и только
тогда, когда p > 2R + r.
Докажите, что треугольник ABC остроугольный тогда и только
тогда, когда на его сторонах BC, CA и AB можно выбрать такие
внутренние точки A1, B1 и C1, что
AA1 = BB1 = CC1.
Пусть
Страница: << 1 2 3 4 >> [Всего задач: 16]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке