Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Пусть ABCD – выпуклый четырехугольник. Докажите, что  AB + CD < AC + BD.

Вниз   Решение


Имеется необычный калькулятор. При включении калькулятора на экране возникает дробь 1/1. При нажатии на кнопку * к числителю дроби, изображенной на экране, прибавляется знаменатель, а знаменатель остается прежним. При нажатии на кнопку $ числитель и знаменатель дроби меняются местами. Других кнопок на калькуляторе нет.
  а) Что покажет калькулятор после выполнения следующей последовательности команд:  $ * * * * * * * * * * $ ?
Как добиться того, чтобы калькулятор показал:
  б) 1/2,   в) 7/3,   г) 4/11,   д) 57/91 ?

ВверхВниз   Решение


Найти наибольший общий делитель чисел  2n + 13  и  n + 7.

ВверхВниз   Решение


Функция y = f (x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что f (0) = f (1) = 0 и что |f''(x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции f для всевозможных функций, удовлетворяющих этим условиям?

ВверхВниз   Решение


Существует ли выпуклый четырёхугольник, у которого сумма длин диагоналей не меньше периметра?

ВверхВниз   Решение


Существует ли плоский четырехугольник, у которого тангенсы всех внутренних углов равны?

ВверхВниз   Решение


Найдите двугранные углы трёхгранного угла, плоские углы которого равны 90o , 90o и α .

ВверхВниз   Решение


Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 563]      



Задача 57863

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что окружность при осевой симметрии переходит в окружность.
Прислать комментарий     Решение


Задача 57864

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Четырехугольник имеет ось симметрии. Докажите, что этот четырехугольник либо является равнобедренной трапецией, либо симметричен относительно диагонали.
Прислать комментарий     Решение


Задача 57865

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Ось симметрии многоугольника пересекает его стороны в точках A и B. Докажите, что точка A является либо вершиной многоугольника, либо серединой стороны, перпендикулярной оси симметрии.
Прислать комментарий     Решение


Задача 57866

Тема:   [ Осевая и скользящая симметрии (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.
Прислать комментарий     Решение


Задача 35530

Темы:   [ Свойства симметрий и осей симметрии ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 2+
Классы: 8,9

Может ли бильярдный шар, отразившись поочередно от двух соседних сторон прямоугольного бильярдного стола, прийти в исходную точку?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .