ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину? б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец? Решение |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 693]
Fn + 1Fn - 1 - Fn2 = (- 1)n (n > 0).
Будет ли тождество Кассини справедливо для всех целых n?
Сколько существует последовательностей из единиц и двоек, сумма всех элементов которых равна n? Например, если n = 4, то таких последовательностей пять: 1111, 112, 121, 211, 22.
Докажите, что если Q(x) – многочлен степени m + 1, то P(x) = ΔQ(x) – многочлен степени m.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 693] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|