ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Фибоначчиева система счисления. Докажите, что произвольное натуральное число n, не превосходящее Fm, единственным образом можно представит в виде
n = bkFk,
где все числа b2, ..., bm
равны 0 либо 1, причем среди этих чисел нет двух единиц
стоящих рядом, то есть
bkbk + 1 = 0
(2 k m - 1). Для
записи числа в фибоначчиевой системе счисления используется
обозначение:
n = (bk...b2)F.
Решение |
Страница: << 1 2 3 4 >> [Всего задач: 20]
Глава Монетного двора хочет выпустить монеты 12 номиналов (каждый – в натуральное число рублей) так, чтобы любую сумму от 1 до 6543 рублей можно было заплатить без сдачи, используя не более 8 монет. Сможет ли он это сделать?
n = bkFk,
где все числа b2, ..., bm
равны 0 либо 1, причем среди этих чисел нет двух единиц
стоящих рядом, то есть
bkbk + 1 = 0
(2 k m - 1). Для
записи числа в фибоначчиевой системе счисления используется
обозначение:
n = (bk...b2)F.
Страница: << 1 2 3 4 >> [Всего задач: 20] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|